Skip to content

TORCHSCRIPT_CLASSIFIER

Execute a torchscript classifier against an input image.Params:input_image : ImageThe image to classify.class_names : DataFrameA dataframe containing the class names.model_path : strThe path to the torchscript model.Returns:out : DataFrameA dataframe containing the class name and confidence score.
Python Code
from flojoy import DataFrame, Image, flojoy, run_in_venv


@flojoy
@run_in_venv(
    pip_dependencies=[
        "torch==2.0.1",
        "torchvision==0.15.2",
        "numpy",
        "Pillow",
    ]
)
def TORCHSCRIPT_CLASSIFIER(
    input_image: Image, class_names: DataFrame, model_path: str
) -> DataFrame:
    """Execute a torchscript classifier against an input image.

    Parameters
    ----------
    input_image : Image
        The image to classify.
    class_names : DataFrame
        A dataframe containing the class names.
    model_path : str
        The path to the torchscript model.

    Returns
    -------
    DataFrame
        A dataframe containing the class name and confidence score.
    """

    import numpy as np
    import pandas as pd
    import PIL.Image
    import torch
    import torchvision

    # Load model
    model = torch.jit.load(model_path)
    channels = [input_image.r, input_image.g, input_image.b]
    mode = "RGB"

    if input_image.a is not None:
        channels.append(input_image.a)
        mode += "A"

    input_image_pil = PIL.Image.fromarray(
        np.stack(channels).transpose(1, 2, 0), mode=mode
    ).convert("RGB")
    input_tensor = torchvision.transforms.functional.to_tensor(
        input_image_pil
    ).unsqueeze(0)

    # Run model
    with torch.inference_mode():
        output = model(input_tensor)

    # Get class name and confidence score
    _, pred = torch.max(output, 1)
    class_name = class_names.m.iloc[pred.item()].item()
    confidence = torch.nn.functional.softmax(output, dim=1)[0][pred.item()].item()

    return DataFrame(
        df=pd.DataFrame({"class_name": [class_name], "confidence": [confidence]})
    )

Find this Flojoy Block on GitHub

Example

Having problem with this example app? Join our Discord community and we will help you out!
React Flow mini map

In this example, the TORCHSCRIPT_CLASSIFIER loads the user-provided .torchscript model as well as the .csv table that maps class indices to class names. The model is then used to classify the provided input image, and it outputs the class name of the predicted class as well as a confidence score.