Skip to content

CHANNEL_SPLIT

The CHANNEL_SPLIT node returns the rgba channels of an image into 4 separate images for direct visualization.While the notion of "splitting an image into RGBA channels" is inherently tied to coloured pictures, this function will attempt to make sense of multiple input types. Should the input be of type 'Image', then the function will return the RGBA channels. Should the input be of type 'Matrix', meaning ideally a 3D 'numpy' array of size (L, M, 3) or (L, M, 4), then the function will return each channel respectively.Params:default : Image | MatrixThe image to split.Returns:r : ImageThe red channel.g : ImageThe green channel.b : ImageThe blue channel.a : ImageThe alpha channel.
Python Code
from flojoy import flojoy, Image, Matrix, DCNpArrayType
from typing import TypedDict
import numpy as np


class ChannelSplitOutput(TypedDict):
    r: Image
    g: Image
    b: Image
    a: Image


@flojoy
def CHANNEL_SPLIT(default: Image | Matrix) -> ChannelSplitOutput:
    """The CHANNEL_SPLIT node returns the rgba channels of an image into 4 separate images for direct visualization.

    While the notion of "splitting an image into RGBA channels" is inherently tied to coloured pictures, this function will attempt to make sense of multiple input types.
    Should the input be of type 'Image', then the function will return the RGBA channels.
    Should the input be of type 'Matrix', meaning ideally a 3D 'numpy' array of size (L, M, 3) or (L, M, 4), then the function will return each channel respectively.

    Parameters
    ----------
    default : Image | Matrix
        The image to split.

    Returns
    -------
    r : Image
        The red channel.
    g : Image
        The green channel.
    b : Image
        The blue channel.
    a : Image
        The alpha channel.
    """

    try:
        if isinstance(default, Image):
            r = default.r
            g = default.g
            b = default.b
            a = default.a

        elif isinstance(default, Matrix):
            r = default.m[..., 0]
            g = default.m[..., 1]
            b = default.m[..., 2]
            a = np.zeros_like(r) if default.m.shape[-1] == 3 else default.m[..., 3]

            if default.m.shape[-1] != 3 or default.m.shape[-1] != 4:
                raise IndexError(
                    "Input array is not of sensible size to split channels"
                )
        else:
            raise TypeError("Unexpected type of the input argument.")

        zeros = np.zeros(r.shape, np.uint8)
        ones = 255 * np.ones(r.shape, np.uint8)

        return ChannelSplitOutput(
            r=Image(
                r=r,
                g=zeros,
                b=zeros,
                a=ones,
            ),
            g=Image(
                r=zeros,
                g=g,
                b=zeros,
                a=ones,
            ),
            b=Image(
                r=zeros,
                g=zeros,
                b=b,
                a=ones,
            ),
            a=Image(
                r=zeros,
                g=zeros,
                b=zeros,
                a=a,
            ),
        )
    except Exception as e:
        raise e

Find this Flojoy Block on GitHub

Example

Having problem with this example app? Join our Discord community and we will help you out!
React Flow mini map

This example shows the function of the CHANNEL_SPLIT node. This node takes an image and splits it into RGBA (Red Green Blue Alpha) layers (or channels).